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Abstract. Properties of the lowest 0+ states of 12C are calculated to study the role of three-body inter-
actions in the α-cluster model. An additional short-range part of the local three-body potential is intro-
duced to incorporate the effects beyond the α-cluster model. There is enough freedom in this potential
to reproduce the experimental values of the ground-state and excited-state energies and the ground-state
root-mean-square radius. The calculations reveal two principal choices of the two-body and three-body
potentials. Firstly, one can adjust the potentials to obtain the width of the excited 0+

2 state and the
monopole 0+

2 → 0+
1 transition matrix element in good agreement with the experimental data. In this case,

the three-body potential has strong short-range attraction supporting a narrow resonance above the 0+
2

state, the excited-state wave function contains a significant short-range component, and the excited-state
root-mean-square radius is comparable to that of the ground state. Next, rejecting the solutions with an
additional narrow resonance, one finds that the excited-state width and the monopole transition matrix
element are insensitive to the choice of the potentials and both values exceed the experimental ones.

PACS. 21.45.+v Few-body systems – 21.60.Gx Cluster models – 23.60.+e α decay – 24.30.Gd Other
resonances

1 Introduction

As the α-particle is the most tightly bound nucleus, a
variety of the low-energy nuclear properties can be suc-
cessfully described within the framework of the α-cluster
model. The effective two-body and, for more than two
α-particles, at least three-body potentials must be deter-
mined as an input for the model. The three-body calcula-
tions allow one to reduce the ambiguity in the two-body
potential which could not be determined merely from the
two-body data. In this respect, the basic problem is to
check the model for the system of three α-particles, thus,
the effective potentials should be chosen by fitting the
main characteristics of the 12C nucleus to the experimen-
tal values.

In spite of significant simplifications provided by the
α-cluster model, there are complicated problems inherent
in the processes with few charged particles in the initial
or final state. For problems of this kind the main difficulty
stems from the necessity to describe the continuum wave
function, and even the qualitative understanding of the
reaction mechanism is crucial. The formation of the 12C
nucleus in the triple-α low-energy collisions, which plays
a key role in stellar nucleosynthesis [1,2], is a well-known
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example. More examples are the double-proton radioac-
tivity, which has been a subject of thorough experimental
and theoretical investigations during the last few years
(for details see the recent reviews [3,4]), and the decay
of the long-lived 12C(1+) state [5]. Note also a descrip-
tion of the multicluster decay of atomic nuclei by using
the quasi-classical approach to Coulomb-correlated pene-
tration through a multidimensional potential barrier [6].

In the triple-α reaction both the low-energy α-α res-
onance (the ground state of 8Be) and the near-threshold
three-body resonance (12C(0+

2 ) state) play an important
role. These resonances are predicted in ref. [2] as the
unique possibility for helium burning that provides the
only explanation for the observable abundance of ele-
ments in the Universe. Due to these resonances, the
triple-α reaction in stars goes through the sequential
reaction 3α→ 8Be + α→ 12C(0+

2 )→ 12C+ γ. The pre-
dicted 12C(0+

2 ) state, starting with observation [7,8], was
thoroughly studied later on, in particular, the decay mech-
anism was investigated in ref. [9].

Among other interesting problems connected with the
description of α-cluster nuclei, one should mention the
nonresonance reaction 3α→ 12C, which is responsible for
helium burning at ultra-low temperatures and high densi-
ties as it occurs in accretion of helium on white dwarfs and
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neutron stars [10]. Whereas a number of model calcula-
tions of the nonresonance reaction are available [11–14], a
consistent three-body description is needed to avoid a pos-
sible error of a few orders of magnitude in the calculated
reaction rate. Note also that recently the α-cluster states
in nuclei have attracted attention in connection with the
problem of α-particle condensation (see, e.g., ref. [15] and
references therein).

The focus of the present paper is to shed light, using
the technique of ref. [16], on the role of the three-body
interactions in the description of the lowest 0+ states of
12C. The main question to be answered is to what ex-
tent the α-cluster model is able to reproduce the experi-
mental energies and sizes of the nuclear states. The next
more challenging problem is to describe the fine character-
istics, such as the width of the near-threshold 0+

2 state and
0+
2 → 0+

1 monopole transition matrix element (MTME),
which are sensitive to the choice of the potentials. In re-
alistic calculations, the finite size of the α-particle implies
the crucial importance of the effective three-body interac-
tions for a reliable description within the framework of the
α-cluster model [16–18]. Furthermore, the effective three-
body interactions could be used to take into account the
non–α-cluster structure of the nucleus at short distances
in addition to the effect of α-particle distortions at large
distances. Clearly, the choice of the effective two-body and
three-body potentials must be governed by the results of
the three-body calculations aimed at an optimal descrip-
tion of the 12C characteristics.

2 Theoretical background

The present paper is aimed at choosing, by means of mi-
croscopic three-body calculations of the ground and first-
excited 0+ states of 12C, the effective three-body and two-
body potentials of the α-cluster model. It is assumed that
all the effects connected with both the internal structure of
α-particles and the identity of nucleons are incorporated
in the effective potentials. In particular, the three-body
potential is chosen to include the short-range effects of
antisymmetrization in the 12-nucleon system, which are
not taken into account by the two-body potential. The
two-body input is defined by the local α-α potential that
reproduces the experimental energy and width of the near-
threshold α-α resonance (ground state of 8Be). More pre-
cisely, with the 8Be energy fixed and its width varying
within the experimental uncertainty, a set of two-body po-
tentials is constructed by modification of the Ali-Bodmer
s-wave potential [19]. One uses a simple, and suitable
for calculation, functional form of the three-body poten-
tial, which depends only on the collective variable, viz,
the hyper-radius. A sum of two Gaussian terms is used,
which makes it possible to take into account both the effect
of α-particle distortions at large distances and the short-
range non–α-cluster effects. Calculation of the resonance
width and the MTME makes sense only if, not only the
ground-state energy, but also the resonance position and
the root-mean-square (r.m.s.) radius of the ground state
are fixed at the experimental values. These requirements

are satisfied by adjusting the parameters of the three-body
potential.

The technical details and the numerical procedure are
basically the same as in the previous paper [16]; therefore,
only a sketch of the calculational method will be given be-
low. The method is based on the expansion of the total
wave function in terms of the eigenfunctions on a hyper-
sphere [20]. The eigenvalue problem on a hypersphere is
numerically solved by using the variational method.

The units h̄ = m = e = 1 are used throughout the pa-
per unless otherwise specified. The scaled Jacobi coordi-
nates are defined as xi = rj−rk, yi = (2ri−rj − rk)/

√
3,

where the indices {ijk} must be chosen as a permutation
of {123} and ri is the position vector of the i-th parti-
cle. The hyperspherical variables ρ, αi, and θi, are defined
via the Jacobi coordinates by the relations xi = ρ cos αi

2 ,

yi = ρ sin αi

2 , and cos θi =
(xi·yi)
xiyi

.

The Schrödinger equation for three α-particles is

(

−∆x −∆y +
3
∑

j=1

V (xj) + V3(ρ)− E

)

Ψ = 0 , (1)

where the total interaction contains the pair-wise poten-
tials V (xi) and the three-body potential V3(ρ). The two-
body potential is a sum V (x) = Vs(x) + Vc(x), where

Vs(x) = Vre
−µ2

r
x2 − Vae

−µ2

a
x2

(2)

and Vc(x) =
4

x
. The three-body potential is taken as an

obvious extension of the potential used in refs. [16–18],

V3(ρ) = V0e
−(ρ/b0)

2

+ V1e
−(ρ/b1)

2

. (3)

With the expansion of the total wave function

Ψ = ρ−5/2
∑

n

fn(ρ)Φn(α, θ, ρ) (4)

in a series of the normalized eigenfunctions Φn satisfying
the equation

[

∂2

∂α2
+ 2 cotα

∂

∂α
+

1

sin2 α

(

∂2

∂θ2
+ cot θ

∂

∂θ

)

−ρ
2

4

3
∑

j=1

V
(

ρ cos
αj
2

)

+ λn(ρ)

]

Φn(α, θ, ρ) = 0 , (5)

the Schrödinger equation (1) is routinely transformed to
the system of hyper-radial equations (HRE),
[

∂2

∂ρ2
− 1

ρ2

(

4λn(ρ) +
15

4

)

− V3(ρ) + E

]

fn(ρ)

+
∑

m

(

Qnm(ρ)
∂

∂ρ
+

∂

∂ρ
Qnm(ρ)− Pnm(ρ)

)

fm(ρ) = 0 ,

(6)

Qnm(ρ)=

〈

Φn

∣

∣

∣

∣

∂Φm
∂ρ

〉

, Pnm(ρ)=

〈

∂Φn
∂ρ

∣

∣

∣

∣

∂Φm
∂ρ

〉

, (7)

where 〈·|·〉 stands for integration on the hypersphere.
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The functions λn(ρ), Qnm(ρ), and Pnm(ρ) are calcu-
lated by using the variational solutions of the eigenvalue
problem (5). In view of the symmetry of Φn(α, θ, ρ), which
follows from the identity of α-particles, the variational
trial functions are chosen to be symmetric under any per-
mutation of particles. Few types of trial functions are used,
which provides flexibility of the variational basis needed
to describe an essentially different structure of the wave
function at different values of ρ, in particular, the two-
and three-cluster configurations in the asymptotic region.
Thus, the variational basis contains a set of the symmet-
ric hyperspherical harmonics which are eigenfunctions of
the differential operator in eq. (5). Furthermore, to de-
scribe the two-cluster configuration, symmetrized combi-
nations of the ρ-dependent two-body functions φi(x) are
included in the basis. As in ref. [16], a set of φi(x) in-
cludes Gaussian functions φi(x) = exp (−βix2), which al-
lows the two-cluster wave function to be described within
the range of the nuclear potential Vs(r), and the func-
tion φ(x) = x1/4 exp (−4√x(1 + ax)) to describe the two-
cluster wave function in the sub-barrier region.

Solutions of the eigenvalue problem (at E < 0) and the
α+ 8Be scattering problem (at E > 0) for HRE (6) pro-
vide the properties of the ground 0+

1 state and the excited
0+
2 resonance state, respectively. The resonance position
Er and width Γ are determined by fitting the phase shift
δE for α+ 8Be scattering to the Wigner dependence on
energy,

cot(δE − δbg) =
2

Γ
(Er − E) , (8)

where δE is defined by the asymptotic form of the first-
channel radial function f1(ρ) (see eq. (23) in ref. [16])
and the background phase shift δbg is of no interest for
the present calculation. It is suitable to treat the ultra-
narrow 0+

2 resonance state on equal footing with the
ground state. Therefore, its wave function, defined as the
scattering solution at the resonance energy Er, is normal-
ized on the finite interval 0 ≤ ρ ≤ ρt, where ρt is the
turning point of the first-channel hyper-radial potential
U1(ρ) =

1
ρ2

(

4λ1(ρ) +
15
4

)

+V3(ρ)+P11(ρ). Thus, the r.m.s.

radii R(i) of the ground (i = 1) and excited (i = 2) states
and MTME M12 are defined by the expressions

R(i) =

√

R2
α +

1

6
ρ̄2
i , ρ̄2

i =
∑

n

∞
∫

0

∣

∣

∣
f (i)
n (ρ)

∣

∣

∣

2

ρ2dρ , (9)

where Rα = 1.47 fm is the r.m.s. radius of the α-particle,
and

M12 =
∑

n

ρt
∫

0

f (2)
n (ρ)f (1)

n (ρ)ρ2dρ . (10)

3 Results

Calculations have been performed with a family of the
two-body α-α potentials Vs (2), which are obtained by
modification of potential (a) from ref. [19]. With the

Table 1. Parameters of the α-α potential Vs (2) providing
the α-α resonance widths γ. The meaning of the factor C is
described in the text.

γ (eV) Vr (MeV) Va (MeV) C

5.69 35.024 19.492 1.135
6.20 52.772 22.344 1.07
6.37 60.051 23.359 1.05
6.40 61.220 23.516 1.045
6.50 66.028 24.141 1.03
6.60 71.057 24.766 1.02
6.80 82.563 26.1 1.0

ranges of the repulsive and attractive parts fixed at the
values µ−1

r = 1.53 fm and µ−1
a = 2.85 fm, the parameters

Vr and Va were chosen to reproduce the experimental en-
ergy E2α = 91.89 keV [21] of the α-α resonance (ground
state of 8Be) and to vary its width within the experimental
uncertainty γ = 6.8 ± 1.7 eV [21]. As the width γ unam-
biguously determines the parameters of the two-body po-
tential, in the following the potential will be marked by γ.
A partial set of the parameters Vr and Va and the widths γ
is presented in table 1. For all the potentials under consid-
eration, the calculation of the s-wave α-α scattering shows
a similar dependence of the phase shifts on energy. In fact,
the phase shifts multiplied by a proper factor coincide for
different potentials up to an energy of about 7 MeV. The
best agreement of the calculated phase shifts with exper-
imental data is obtained for the potential with γ = 6.8,
whereas the phase shifts calculated with other potentials
are scaled by the factor C presented in table 1.

The three-channel system of HREs (6) is solved to cal-
culate the ground- and excited-state energies Egs and Er,

the r.m.s. radii R(i), the excited-state width Γ , and the
monopole transition matrix element M12. Convergence in
a number of HREs is sufficiently fast and the solution of
three HREs allows the resonance width to be determined
with an accuracy not worse than 1 eV. Generally, the pa-
rameters of the numerical procedure and an accuracy of
the calculated Egs, Er, Γ , R

(i), and M12 were the same as
in ref. [16]. Using the numerical procedure of determina-
tion of Egs, Er, and R

(1), the parameters of the three-body
potential for each two-body potential were determined by
solving the nonlinear inverse problem of fixing the ground-
and excited-state energies and the ground-state r.m.s. ra-
dius at the experimental values Egs = −7.2747 MeV,

Er = 0.3795 MeV [22], and R
(1)
exp = 2.48± 0.22 fm [23,24].

In starting the description of the results, it is useful
to digress into the discussion of the calculations with the
one-term three-body potential (V1 = 0), which provide
better understanding of the dependence on the three-body
potential V3(ρ). For this two-parameter potential, only
Egs and Er are fixed at the experimental values to de-
termine V0 and b0. The calculation gives two types of so-
lutions, that is, two families of one-term three-body po-
tentials, whose parameters V0 and b0 are presented in ta-
ble 2. For one type of solutions, three-body potentials are
rather extended with the range about b0 = 4.5 fm and
strength |V0| < 40 MeV. The ground-state r.m.s. radius
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Table 2. Two families of solutions with the one-term three-body potential (V1 = 0) for a number of two-body potentials marked
by the widths γ (eV) of the α-α resonance. Shown are the parameters b0 (fm) and V0 (MeV), the r.m.s. radii R(i) (fm), the
width of the excited state Γ (eV), and the monopole transition matrix element M12 (fm2).

γ b0 V0 Γ R(1) R(2) M12 b0 V0 Γ R(1) R(2) M12

5.69 4.5001 −18.600 13.0 2.35 3.7 8.59 2.2310 −89.941 8.2 2.02 3.4 6.46
6.20 4.6006 −20.824 15.9 2.45 3.8 8.87 2.3314 −113.28 9.7 2.09 3.5 6.90
6.37 4.6247 −21.643 16.9 2.48 3.9 8.93 2.3472 −125.05 10.2 2.12 3.5 7.01
6.40 4.6455 −21.640 17.2 2.48 3.9 8.97 2.3464 −127.48 10.4 2.12 3.5 7.03
6.50 4.6379 −22.297 17.6 2.50 3.9 8.97 2.3547 −135.38 10.7 2.13 3.5 7.09
6.60 4.6455 −22.838 18.1 2.51 3.9 8.99 2.3584 −144.47 11.0 2.14 3.6 7.13
6.80 4.6531 −24.047 19.3 2.55 4.0 9.03 2.3611 −166.39 11.7 2.17 3.6 7.22

is in the range 2.2 fm < R(1) < 2.8 fm, which includes
the experimental value, whereas Γ and M12 significantly
exceed the experimental values Γ = 8.5 ± 1.0 eV and
M12 = 5.48± 0.22 fm2 [22]. For another type of solutions,
b0 is about twice as small and |V0| exceeds 80 MeV. The

ground-state r.m.s. radius is lower than R
(1)
exp; nevertheless,

Γ and M12 are in better agreement with experiment than
in the previous case. As the ground-state size R(1) cannot
be fixed at the experimental value by using the one-term
three-body potential, it is not surprising that finer prop-
erties Γ and M12 vary in a wide range with variations of
the two-body potential.

The results for the one-term potential (V1 = 0) clearly
show lack of simultaneous description for the ground-state
size R(1) and the excited-state characteristics Γ and M12.
As far as it does not seem reasonable to improve the agree-
ment between calculation and experiment for the very fine
properties Γ and M12 at the expense of the ground-state
r.m.s. radius, one concludes that the one-term three-body
potential is too simple to describe the real nucleus. One
can readily propose to use simultaneously both the short-
range and the long-range term in the three-body potential
to obtain a compromise description of the ground-state
and excited-state characteristics.

After the digression on the one-term three-body po-
tential, one returns to the main route of the calculations
with the two-term V3(ρ) in the form (3). Four parame-
ters of the three-body potential are used to fix the basic
properties, viz, the ground-state and excited-state ener-
gies and the ground-state r.m.s. radius at the experimen-
tal values1. Varying one remaining degree of freedom in
the four-dimensional space of parameters V0,1, b0,1 of the
three-body potential, one obtains a one-parameter set of
solutions, which is suitably represented for each two-body
potential by a line in the (Γ,M12)-plane, as shown in fig. 1.
It turns out that some of the calculated potentials, namely,
those for which the parameter b0 > 6 fm, are of the form
of a shallow well with a long tail. These solutions of un-
reasonably long range were withdrawn from consideration
and will not be presented.

Furthermore, the parameters of the long-range term in
the three-body potential V0 ≈ 20 MeV and b0 ≈ 4.5 fm

1 In the present calculation, the ground-state r.m.s. radius
R(1) is fixed at the elder experimental value of 2.47 fm [25]
that does not reflect on the conclusions.
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Fig. 1. Calculated M12-Γ relations. Each line depicts the re-
sult for the two-body potential marked by the two-body res-
onance width γ. The point with error bars shows the experi-
mental data. The corresponding R(2)-Γ relations are shown in
the inset.

are similar to those found in the calculations with the
one-term potential. Thus, the long-range tails of the four-
parameter three-body potentials and one of the one-term
potentials practically coincide. On the other hand, the
one-term potentials of another type look like an aver-
age of the full three-body potentials at short distances.
These qualitative features are seen in fig. 2, where the
first-channel hyper-radial potentials U1(ρ) are presented.

All the solutions turn out to pass through a small com-
mon area about Γ ≈ 16.5 eV and M12 ≈ 9 fm2, which is
marked by a diamond in fig. 1. This area is well sepa-
rated from the experimental values. Correspondingly, the
calculated values of the excited-state r.m.s. radius are con-
centrated around the value R(2) ≈ 3.9 fm. This surprising
insensitivity of Γ , M12, and R

(2) to the choice of the two-
body and three-body potentials results from the imposed
requirement to fix the ground-state r.m.s. radius at the
experimental value.
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Fig. 2. The first-channel hyper-radial potentials U1(ρ) calcu-
lated for the two-body potential providing γ = 6.4 eV. Dash-
dotted and dotted lines depict U1(ρ) for the three-body poten-
tials whose parameters are marked in table 3 by a diamond and
an asterisk, respectively. Full and dashed lines depict U1(ρ) for
the one-term three-body potential whose parameters are given
in line 4 of table 2. The inset shows the first-channel radial
functions f1(ρ) for the potential marked by an asterisk (full
and dash-dotted lines for the ground and excited states) and
for the potential marked by a diamond (dashed and dotted
lines for the ground and excited states).

The solutions could be separated into two classes,
which are characterized by the sign of the short-range term
in the three-body potential. The solutions of the first class
(V1 < 0) are found for γ > 6.35 eV and those of the second
class (V1 > 0) for γ < 6.35 eV. Note that this separation is
correlated with the dependence of the ground-state r.m.s.
radius R(1) on γ found in the above calculations for the

extended one-term potentials. If R(1) < R
(1)
exp, which takes

place for γ < 6.35 eV, one needs to add a repulsive term

(V1 > 0), and if R(1) > R
(1)
exp (for γ > 6.35 eV), an at-

tractive term must be added to fix R(1) at the experimen-
tal value. For the second-class solutions, the larger Γ the
smaller M12; therefore, the corresponding lines never ap-
proach the experimental data. On the contrary, for the
solutions of the first class (γ > 6.35 eV), the lines in
the (Γ,M12)-plane bend downward inside the common
area that provides an option to diminish simultaneously
Γ and M12.

More detailed consideration of the dependence on the
two-body potential (on the parameter γ) shows that the
lines in the (Γ,M12)-plane representing the solutions of
the first class form a band, as seen in fig. 1. The upper
and lower borders of the band correspond to γ ≈ 6.8 eV
and γ ≈ 6.35 eV, respectively. The dependence on γ
(for γ > 6.8 eV) becomes weak so that the lines in
the (Γ,M12)-plane are rather close to the upper border,

Table 3. Parameters of the three-body potential and charac-
teristics of the 12C(0+) states. The two-body potential provides
the α-α resonance width γ = 6.4 eV. An asterisk and a dia-
mond mark two solutions which are also depicted in fig. 1.

V0 b0 V1 b1 Γ M12 R(2)

(MeV) (fm) (MeV) (fm) (eV) (fm2) (fm)

3 −22.189 4.5699 −411.719 1.0155 16.5 9.01 3.86

∗ −22.867 4.5109 −1710.00 0.41009 7.0 6.0 2.76

though being inside the band. For decreasing γ below
6.8 eV, the lines in the (Γ,M12)-plane shift downward until
the critical value about γ ≈ 6.35 eV is reached. An abrupt
transition to the second-class solutions takes place at the
critical value of γ, beyond which the lines in the (Γ,M12)-
plane always remain near the common area (Γ ≈ 16.5 eV,
M12 ≈ 9 fm2). The dependence of R(2) on γ is illustrated
in the inset in fig. 1, where it is seen that for γ > 6.35 eV
the lines lie within a narrow band in the (Γ,R(2))-plane.
Alternatively, for γ < 6.35 eV, the calculated values are
in a small area about Γ ≈ 16.5 eV and R(2) ≈ 3.9 fm.

The described features are closely connected with the
form of the three-body potential, in particular, the smaller
Γ , M12, and R(2) the larger the strength |V1| of the at-
tractive term and the smaller its range b1. To exemplify
these considerations, let us consider a typical two-body
potential with γ = 6.4 eV and a particular three-body
potential, which gives Γ and M12 (marked by an aster-
isk in fig. 1) sufficiently close to the experimental data.
The parameters of the three-body potential, Γ , M12, and
R(2) at this point are compared in table 3 with the cor-
responding values, which are typical of the common area
(marked by a diamond). The excited-state r.m.s. radius
R(2), as shown in the inset in fig. 1, decreases with de-
creasing Γ from the typical value R(2) ≈ 3.9 fm for solu-
tions near the common area to R(2) ≈ 2.8 fm for solutions
near the point marked by an asterisk that only slightly ex-
ceeds the ground-state r.m.s. radius R(1) = 2.47 fm. The
diminishing of R(2) to these small values underlines a com-
paratively compact structure of the excited state. Indeed,
the excited-state wave functions, as shown in the inset in
fig. 2, are quite different for the solutions marked by a
diamond and an asterisk. Nevertheless, the ground-state
wave functions are surprisingly similar to each other.

A drastic modification of the excited-state wave func-
tion at short distances for the solution with small Γ and
M12 hints that the short-range attractive well in the three-
body potential is able to support a near-lying resonance
state. Indeed, the calculations reveal an additional reso-
nance, whose energy changes from about 0.5 MeV for the
solutions with small Γ and M12 to about 1 MeV for the
solutions providing Γ and M12 near the common area.
Correspondingly, the resonance width increases from hun-
dreds of eV up to hundreds of keV. In particular, con-
sidering the two-body potential with γ = 6.4 eV, one
finds that energy and width of the additional resonance
increase from E∗ = 0.48 MeV and Γ ∗ = 0.26 keV (for the
three-body potential with Γ = 7 eV) to E∗ = 1.12 MeV
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and Γ ∗ = 34.4 keV (for the three-body potential with
Γ = 15.2 eV).

4 Summary and discussion

The lowest 0+ states of 12C are calculated to study the role
of the three-body interactions in the α-cluster model. The
method used in the present paper provides an accurate cal-
culation of fine characteristics of 12C, viz, the extremely
narrow width Γ of the 0+

2 state and the 0+
2 → 0+

1 MTME
M12. The two-body potentials, obtained by modification
of the Ali-Bodmer potential, provide the exact energy of
the α-α resonance (the 8Be nucleus), while its width is
allowed to vary within the experimental uncertainty. A
simple two-Gaussian form of the three-body potential is
chosen under the assumption that the potential must take
into account the effects beyond the α-cluster model. The
experimental values of the ground- and excited-state en-
ergies and the ground-state r.m.s. radius are used to im-
pose three restrictions on four parameters of the three-
body potential. The remaining degree of freedom provides
the one-parameter dependence of the width of the near-
threshold 0+

2 state and the 0+
2 → 0+

1 MTME, which are
experimentally available. It should be emphasized that the
determination of the parameters of V3(ρ) by fixing Egs,

Er, and R(1) at the experimental values leads to a rather
complicated dependence of Γ , M12, and R(2) on the α-α
interactions.

The calculations reveal that for all the two-body po-
tentials under consideration Γ and M12 take values of
about 16.5 eV and 9.0 fm2 and become essentially inde-
pendent of the choice of the three-body potential. At the
same time, the excited-state r.m.s. radius R(2) ≈ 3.9 fm
noticeably exceeds the ground-state r.m.s. radius R(2) =
2.47 fm. Both Γ and M12 are well above the experimental
data, which reflects a general trend for these values to be
overestimated in calculations. Alternatively, for the two-
body potentials corresponding to γ > 6.35 eV, i.e., for the
three-body potential with a strong attractive short-range
term, both Γ and M12 decrease as the strength of the at-
tractive term |V1| increases and its range b1 decreases. The
solutions of this kind optionally give the values of Γ and
M12 which are surprisingly close to the experimental data.
For these solutions, the excited-state structure undergoes
a considerable modification by a strong short-range attrac-
tive potential, which entails a considerable amplification
of the short-range component of the excited-state wave
function and, hence, a decrease in the r.m.s. radius to un-
expectedly small values R(2) ≈ 2.8 fm. Against intuition,
the short-range component of the ground-state wave func-
tion decreases. In addition, the attractive short-range term
of the three-body potential leads to the appearance of a
narrow resonance above the 0+

2 state.
In conclusion, a family of the effective potentials was

found, which allows the experimental values for the ba-
sic characteristics of the 12C(0+) states, i.e., Egs, Er,

and R(1), to be reproduced within the framework of the
α-cluster model. Concerning the fine characteristics, such

as Γ , M12, and R
(2), the calculations reveal two principal

choices of the effective potentials. For the first one, the cal-
culated Γ and M12 are localized in small areas Γ ≈ 16±
1 eV and M12 ≈ 9± 0.5 fm2, noticeably above the experi-
mental data. In other words, if the size of the ground state
is fixed, it imposes a stringent constraint on the finer prop-
erties, i.e., Γ and M12 for quite arbitrary potentials. For
the second one, with strong short-range attraction sup-
porting an additional narrow resonance, both Γ and M12

take a wide range of values which might be chosen near
the experimental data. These solutions exist if a narrow
resonance is allowed; however, there are no experimental
indications of a narrow resonance above the 0+

2 state. The

qualitative conclusion is that if Egs, Er, and R
(1) are fixed

at the experimental values, a considerable short-range
component of the wave function is needed to improve the
agreement with experiment for Γ and M12. Certainly, the
problem of a reliable description of Γ and M12 in the
α-cluster model deserves a thorough investigation, e.g.,
by using the nonlocal three-body potential describing the
coupling with a twelve-nucleon channel at short distances.
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